7,639 research outputs found

    Polynomial Relations in the Centre of U_q(sl(N))

    Full text link
    When the parameter of deformation q is a m-th root of unity, the centre of U_q(sl(N))$ contains, besides the usual q-deformed Casimirs, a set of new generators, which are basically the m-th powers of all the Cartan generators of U_q(sl(N)). All these central elements are however not independent. In this letter, generalising the well-known case of U_q(sl(2)), we explicitly write polynomial relations satisfied by the generators of the centre. Application to the parametrization of irreducible representations and to fusion rules are sketched.Comment: 8 pages, minor TeXnical revision to allow automatic TeXin

    Wavelet entropy of stochastic processes

    Full text link
    We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the Normalized Total Wavelet Entropy (NTWS) family [Phys. Rev. E 57 (1998) 932; J. Neuroscience Method 105 (2001) 65; Physica A (2005) in press] and a second introduced by Tavares and Lucena [Physica A 357 (2005)~71]. In order to understand their advantages and disadvantages, exact results obtained for fractional Gaussian noise (-1<alpha< 1) and the fractional Brownian motion (1 < alpha < 3) are assessed. We find out that NTWS family performs better as a characterization method for these stochastic processes.Comment: 12 pages, 4 figures, submitted to Physica

    Capture of liquid hydrogen boiloff with metal hydride absorbers

    Get PDF
    A procedure which uses metal hydrides to capture some of this low pressure (,1 psig) hydrogen for subsequent reliquefaction is described. Of the five normally occurring sources of boil-off vapor the stream associated with the off-loading of liquid tankers during dewar refill was identified as the most cost effective and readily recoverable. The design, fabrication and testing of a proof-of-concept capture device, operating at a rate that is commensurate with the evolution of vapor by the target stream, is described. Liberation of the captured hydrogen gas at pressure .15 psig at normal temperatures (typical liquefier compressor suction pressure) are also demonstrated. A payback time of less than three years is projected

    Metal Oxidation Kinetics and the Transition from Thin to Thick Films

    Full text link
    We report an investigation of growth kinetics and transition from thin to thick films during metal oxidation. In the thin film limit (< 20 nm), Cabrera and Mott's theory is usually adopted by explicitly considering ionic drift through the oxide in response to electric fields, where the growth kinetics follow an inverse logarithmic law. It is generally accepted that Wagner's theory, involving self-diffusion, is valid only in the limit of thick film regime and leads to parabolic growth kinetics. Theory presented here unifies the two models and provides a complete description of oxidation including the transition from thin to thick film. The range of validity of Cabrera and Mott's theory and Wagner's theory can be well defined in terms of the Debye-Huckel screening length. The transition from drift-dominated ionic transport for thin film to diffusion-dominated transport for thick film is found to strictly follow the direct logarithmic law that is frequently observed in many experiments

    Thermal stability of laser treated die material for semi-solid metal forming

    Get PDF
    This paper presents laser surface modification work performed to improve the lifetime of die materials. Die material AISI H13, with typical hardness in the range of 42 to 48 HRC, offers high wear and corrosion resistance. However the cyclic high temperature conditions along with exposure to high viscosity molten metal in semi-solid forming cause the die to wear and crack with resultant shortened die lifetime. In this study, the thermal stability of die material at elevated temperature was investigated through micro-hardness testing and a metallographic study. AISI H13 samples were laser glazed using CO2 continuous wave mode laser with 10.6 μm wavelength. Samples were attached to a specially designed rotating chuck to enable it to be rotated at speeds up to 1500 rpm and allow flat surface glazing to take place. The micro-hardness was measured for as-glazed samples and annealed samples which were held at temperatures ranging from 550oC to 800oC with 50oC intervals. The metallographic study conducted examined the formation of three zones at different depths which were the glazed zone, the heat affected zone and the substrate. As a result of rapid heating and cooling from the laser glazing process, a metallic glass layer was developed which exhibited an average micro-hardness of 900 HV when exposed to 3.34E+10 W/m2 laser irradiance within a range of 0.0011 to 0.0018 s exposure time. Crystallization in glazed zone increased as the annealing temperature increased. As the annealing temperature reached above approximately 600oC, the micro-hardness decreased to approximately 600 HV (equivalent to approx. 54 HRC) due to local crystallization. These findings show potential direct application of glazed dies for non-ferrous semi-solid forming and the requirement for thermal barrier protection for application at higher temperatures

    Tuning spreading and avalanche-size exponents in directed percolation with modified activation probabilities

    Get PDF
    We consider the directed percolation process as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. The model is in a critical state when the activation probability is adjusted at some precise value p_c. Criticality is lost as soon as the probability to activate sites at the first attempt, p1, is changed. We show here that criticality can be restored by "compensating" the change in p1 by an appropriate change of the second time activation probability p2 in the opposite direction. At compensation, we observe that the bulk exponents of the process coincide with those of the normal directed percolation process. However, the spreading exponents are changed, and take values that depend continuously on the pair (p1, p2). We interpret this situation by acknowledging that the model with modified initial probabilities has an infinite number of absorbing states.Comment: 9 pages, 11 figure

    Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform: dynamic study

    Get PDF
    We analyze, within the wavelet theory framework, the wandering over a screen of the centroid of a laser beam after it has propagated through a time-changing laboratory-generated turbulence. Following a previous work (Fractals 12 (2004) 223) two quantifiers are used, the Hurst parameter, HH, and the Normalized Total Wavelet Entropy, NTWS\text{NTWS}. The temporal evolution of both quantifiers, obtained from the laser spot data stream is studied and compared. This allows us to extract information of the stochastic process associated to the turbulence dynamics.Comment: 11 pages, 3 figures, accepted to be published in Physica
    corecore